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Nowadays, experimental and numerical simulations progressively provide an unprecedented volume of ex-
tremely detailed data, which need to be examined and interpreted. There is therefore an increasing ur-
gency of refined investigative tools for appropriate statistical analyses and data mining. Machine-learning
(ML) algorithms offer a new path for investigating high-dimensional, nonlinear problems, such as near-wall
Turbulence. The development of ML methods, associated with the abundance of data and combined with
solid background in Turbulence, offer an unique opportunity for achieving major breakthrough in terms
of advances in wall-bounded flows and their control. The key objectives of this research programme, by using
a large spectrum of statistical analysis combined with various ML approaches, is to nail the boundary-layer
theory down and derive models that are able to predict relevant physical characteristics and the response
to forcing near-wall Turbulence for both incompressible and compressible flows, where density variations
are caused by pressure or temperature fluctuations or both. The other objective is to provide solutions
for reducing drag and, in the case of a thermal boundary layer, to maximise the heat transfer, whilst
keeping losses as low as possible.

Societal context: Turbulent flows dictate the performance characteristics of numerous industrial equip-
ment and environmental applications. One important consequence of Turbulence is high friction drag
on surfaces, the increase relative to laminar conditions easily reaching factors of 10-100, depending on
the Reynolds number of the flow. In many applications, the friction drag is extremely influential to
the operational effectiveness of the device or process. This applies especially to transport, involving
either self-propelling bodies moving in a fluid or fluids being transported in ducts and pipes. The United
Nations’ International Civil Aviation Organization (ICAO) expects aviation emissions to roughly triple
by 2050, at which time aircraft might account for 25% of the global carbon budget (ICCT). There is,
therefore, significant pressure to reduce transport-related emissions, of which friction drag is a
major constituent. On the other hand, enhancing the turbulent fluxes within the wall-bounded region, is
generally beneficial for the heat transfer at walls. Thus, in the case of heat exchangers, a balance need to
be found between drag-induced losses and the heat transfer. With the development of renewable energy,
increasing the efficiency of heat exchangers is a fastgrowing field of research, especially for solar receiver.

Scientific challenges: In contrast with many scientific fields (brain functioning for instance), fluid me-
chanics is in the enviable position of having a first principle equation, the Navier-Stokes (NS) equations,
to describe flows. In principle, the flow motions can be perfectly predicted by solving these equations
(Laplace’s determinism). However, the NS equations prove to be extremely complex and even impossible
to resolve in some cases, mainly because of its non linearity. For any viscous fluid in motion relative to a
solid, the velocity decreases to zero at the wall inducing a shear layer. The flow produced by this shear layer
creates chaotic turbulent structures within a wide spectrum of length and time scales. The stronger the
shear layer is, richer and more complex is the dynamics, which renders the study of near-wall Turbulence
extremely fascinating and challenging. Since Prandtl at the beginning of the last century, near-wall flows
have intensively been studied, however more than two centuries after equations governing turbulent flows
were introduced, our understanding of near-wall Turbulence remains pitifully modest. This is all
more true since as the Reynolds numbers increases turbulent flow becomes more and more complex as
new families of coherent structures are produced and enrich the flow dynamics (see Fig. 1). Without a
sufficiently detailed understanding of turbulent flows, most control strategies remain sub-optimal. Thanks
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Figure 1: Streamwise velocity field for Reτ ≈ 4200. 1: in the viscous sublayer and 2: in the outer flow
(mid-height of the log law).

to recent advances in metrology, and the drastic reduction in computational costs, both the number and
the size of database have undergone substantial growth in fluid mechanics. This abundance of data poses
new challenges for the postprocessing that requires appropriate tools. Thankfully, many techniques have
been developed by the Machine Learning (ML) community that are readily applicable to spatiotemporal
fluid data, and are sustained by the recent advances in hardware (development of GPU/TPU platforms),
algorithms and open-source libraries. By definition, ML is the field of study that gives computers the ability
to learn without being explicitly programmed. In this project, Machine Learning algorithms will not aim
to replace knowledge from physics (evolution laws for instance) with data, but rather to use models and
data in synergy. Indeed, it would be completely nonsense to get rid of centuries of scientific knowledge or
proven models. The applicant will therefore use Machine Learning methods as complements to traditional
approaches by imposing, for example, symmetry properties or known evolutionary models.

The identification of the phenomena driving the flows dynamics remains one of the major
challenges of physics and engineering today. This complexity has traditionally been addressed by
statistical Turbulence models, but these are proven to have only limited generality, even in the case models
are based on the most elaborate transport equations for the second moments of the turbulent fluctuations.
The recent developments of Machine Learning methods for the modelling of large-scale problems and
their control prove to be a promising way forward. Based on our current knowledge of turbulent flows,
and from the many progress which still to be made using Machine Learning techniques, one can expect
to introduce more effective new control methods. Moreover, any efforts towards unravelling the nature of
structures populating boundary layers, and towards understanding their dynamics, are crucial to progress
towards universal modelling of Turbulence, and contribute for deriving effective control systems
that are compatible with the requirements of industrial applications. After years of in-depth analysis of
boundary layer dynamics in compressible and incompressible regimes, and his recent studies using Machine
Learning algorithms, the applicant believe that significant progress in understanding near wall flows and
their control can only be achieved by making the best use of a solid background in Turbulence and new
approaches offered by Machine Learning.
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